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SECTION 1
INTRODUCTION

The deposition of energetic air and debris ions in the altitude range of 100-150 km is a major cause
of IR, C3, and radar system degradation. Variations in the energy spectrum of the deposited particles
can cause orders of magnitude differences in IR radiation and ionization. If the spectrum is "soft",
ions are deposited at high altitude and produce long lived ionization because of the low recombination
rate. However, the IR radiation will be lower because there are fewer molecules. If the spectrum is
"hard", deposition will occur at lower altitudes (105-120 km). The ionization will be short lived but
the IR radiation will be more intense because there are more excited molecules.

Current systems codes predictions depend upon realistic and reliable predictions of deposition
spectra. The research under this contract is focused on providing the first principles calculations
necessary to provide a better understanding of the acceleration and interaction processes between the
expanding debris and the ionosphere of the earth. This report describes evolutionary steps toward
an improved ion deposition model for DNA's system codes.

A two dimensional, hybrid particle-in-cell simulation code is used to study the velocity distributions
of a plasma disturbed by a collisionless shock wave generated by a high altitude nuclear explosion.
Knowledge of the velocity distributions is crucial in understanding plasma instabilities that thermalize
the disturbed plasma and produce the ion deposition spectrum that causes strong system effects. It
is found that plasma particles are strongly accelerated when first encountering the shock wave.
Rather than being specularly reflected, particles are scattered in various directions with respect to the
shock because of irregularities in the shock front. On the basis of studies of velocity distributions at
points successively deeper into the shock, it is found that the beam-like velocity distribution of
particles in front of the shock is changed, over a relatively short distance, into a form gyrotropic with
respect to the magnetic field. Over a longer distance scale the velocity distribution is partially
isotropized, developing a Maxwellian shape in the component parallel to the magnetic field. In
contrast, the perpendicular component maintains a shell-like rather than Maxwellian shape. This
observed velocity distribution differs substantially from the bimaxwellian form typically used in
analyses of plasmas disturbed by a collisionless shock. For example, bimaxwellian velocity
distributions are assumed in the models used by codes such as CMHD.

The initial flow of kinetic energy is radial as debris expands away from the detonation point. The
debris material expands faster than the local Alfven velocity, V, = B/(4nnm)"? and generates a
collisionless shock wave which energizes the background ionospheric plasma. Since the expanding
shock wave pushes the Earth's magnetic field in front of it, much initial energization of the
ionospheric plasma is perpendicular to the local magnetic field. It is the process by which energy is
isotropized with respect to the magnetic field that especially interests us since the parallel energy can
readily flow down along field lines and be deposited in the atmosphere. Ultimately, we seek a
"turning model" -- a parameterized model of how energy that is initially predominantly perpendicular




to field lines is "turned" into parallel energy.

Tt is well known from kinetic theory that plasmas with free energy will develop unstable motions and
relax to a lower energy state. A classic example is a plasma with more kinetic energy perpendicular
to the magnetic field than kinetic energy parallel to the field. Sucha plasma is said to be anisotropic,
with T, > T,, and is subject to instabilities such as the mirror mode [Chandrasekhar, 1958; Barnes,
1966; Hasegawa, 1975] or the Alfven ion cyclotron [Kennel and Petschek, 1966; Davidson and
Ogden, 1975]. These instabilities develop nonlinearly so as to reduce the temperature anisotropy of
the plasma. The mirror mode and Alfven ion cyclotron are both observed in magnetosheath
[Tsurutani et al., 1982; Moustaizis et al., 1986; Hubert et al., 1989; Sckopke et al., 1990, Brinca et
al, 1990; Anderson and Fuselier, 1992], behind the collisionless bow shock that develops when the
super-Alfvenic solar wind flow encounters the earth. They have been widely studied, with both
theory and simulation, as probable mechanisms for thermalizing ion distributions in the magnetosheath
[Gary et al., 1976, 1992; Tajima et al., 1977, Ambrosiano and Brecht, 1987; Winske and Quest, 1988,
Brinca et al., 1990; Yoon, 1992; McKean et al., 1992]

The collisionless shock associated with a HANE is a dynamic event and differs from the quasi-
stationary bow shock. A HANE produced shock is initially driven quite strongly but the impetus
diminishes as the expanding debris material gives up its energy to the background. The bow shock
is continuously driven by the solar wind. This difference has consequences for the development of
plasma instabilities that isotropize the shock disturbed plasma. In the case of the bow shock, it is
adequate to model the shocked plasma with a bimaxwellian velocity distribution function for which
T, > T,. In contrast, the dynamical, HANE induced, collisionless shock may have velocity space
distortions of the distribution function in addition to the temperature anisotropy.

In this report we describe the use of a two-dimensional hybrid particle-in-cell simulation to ascertain
the characteristic shape of the shocked plasma velocity distribution functions. It is found that plasma
particles are strongly accelerated when first encountering the shock wave. Rather than being
specularly reflected, particles are scattered in various directions with respect to the shock because of
irregularities in the shock front. On the basis of studies of velocity distributions at points successively
deeper into the shock, it is found that the beam-like velocity distribution of particles in front of the
shock is changed, over a relatively short distance, into a form gyrotropic with respect to the magnetic
field. Over a longer distance scale the velocity distribution is partially isotropized, developing a
Maxwellian shape in the component parallel to the magnetic field. In contrast, the perpendicular
component maintains a shell-like rather than Maxwellian shape. This observed velocity distribution
differs substantially from the bimaxwellian form typically used in analyses of plasmas disturbed by a
collisionless shock.

In Section II we describe the 2-D hybrid PIC code and demonstrate how it is used to generate a
collisionless shock typical of that produced by a HANE. The description of the macroscopic features
of the shock, the nature of particle orbits in the presence of the shock, and the spatial evolution of
the velocity distribution function within the shocked plasma are described in Section III. The
observed velocity distribution function is characterized by an analytical distribution in Section IV and




the method by which the analytical distribution is fitted to observations is described. Some properties
of the fitting analytical distribution are also presented. Conclusions are drawn in Section V.

The implications of the observed velocity distribution functions for the mirror mode and Alfven ion

cyclotron instabilities in a HANE disturbed plasma are examined in a separate report [Gladd and
Brecht, 1994].




SECTION 2
DESCRIPTION OF SIMULATION

We are interested in the shape of the velocity distribution functions of ions energized by the passage
of a typical, HANE induced, collisionless shock wave. To model such a shocked plasma we use a
two-dimensional, hybrid particle-in-cell simulation code that treats plasma ions kinetically while
treating electrons as a fluid. The details of the code are described in [Thomas and Brecht, 1986;
Brecht and Thomas, 1988].

The collisionless shock is created in the simulation by streaming a light mass plasma onto a much
heavier obstacle plasma. A shock wave is generated at the obstacle and flows back upstream into the
light plasma. The shock formation process is dynamic and the simulation terminates when the shock
wave has propagated across the computational grid. This situation is illustrated in Figure 2-1a. This
method has some advantages over propagating the light plasma into a back wall [Winske and Quest,
1988] since the boundary conditions at the back wall are not involved. The simulation geometry is
shown in Figure 2-1b. The simulation plane is the two-dimensional (x-z) plane. The ambient
magnetic field is in the +x-direction, and perpendicular to the ambient flow (+z- direction) and the
direction of propagation of the shock wave (-z-direction).

The particular simulation we discuss in this report is designed to produce a collisionless shock
representative of a HANE. In Figure 2-2 we show representative profiles of the simulated
collisionless shock at four different times (0, 500, 1000, 2000 At) during the simulation. The thick
solid line represents the background material (n,, A = 54, Fe*). The dashed line represents the lighter
material that is flowing to the right (n, A =16, O"). The thin solid line represents the magnetic field.
Here, B, and n; have been averaged in the x direction and plotted as a function of z. These quantities
have also been normalized to their values upstream of the shock. In this figure, the light material
flows to the right and a shock develops when it encounters the stationary heavy material. This shock
then propagates to left. After some transient development time, the characteristic overshoots of
density and magnetic field develop, as does a small foot region on the density that corresponds to ions
being reflected from the shock.
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Figure 2-1.  a) Method for generating collisionless shock with simulation. A light specie is flowed
onto a heavy specie, the shock develops and propagates upstream.
b) Geometry of the simulation. Simulation plane is x-z, magnetic field in x direction,
and initial flow is in the -z direction.
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The parameters characterizing this simulation are

N, (cells in x-direction) 32

N, (cells in z-direction) , 200

dx (cell size in x-direction) 1.5 km

dz (cell size in z-direction) 1.5 km

B,, (ambient B field) 0.1 Gauss

ny, (density of heavy specie A = 54, Fe") 2.14 106 cm™ (16384)
n,, (density of light specie A =16, O%) 6.00 10* cm™ (51200)

Vv, (drift speed of light specie) 2000 km/sec
1
1
1.0 10™* sec
60 sec™
33 km
3.7 km

For these parameters the collisionless shock has Mach number 9.0, calculated as the ratio of v,; ¢/Varo
with v, , the Alfven speed in the light specie.




SECTION 3
ANALYSIS OF SIMULATION

Individual particle behavior: We first consider the behavior of simulation particles as they encounter
the shock wave (see Figure 3-1). Here we show the positions of individual particles in a 4 cell x 20
cell region of the simulation. The simulation time is 2000 time steps and the z-strip shown starts with
cell z= 84 (the front of the shock) and runs through cell z = 124 (well into the shock). The x-strip
contains the central cells 15, 16, 17, 18 and are taken to be representative of the 32 simulation cells
transverse to the direction of shock propagation. The regular spacing of particles at the bottom of
Figure 3-1 corresponds to the uniform light particles (O") propagating upward at a velocity of 2000
km/sec. The top of the Figure is well into the shocked region and the particles have been scattered
by the turbulent electric and magnetic fields. The temporal and spatial variation of these turbulent
fields is slow with respect to the velocity of the incoming particles so the sequence in space of
incoming particles appears like a tracer in time of an individual particle. In this respect, we see that
some of the incoming particles are strongly reflected back in the direction from which they came.
Such reflection is expected for a high Mach number collisionless shock wave. This method of
viewing particles is of limited utility in determining the overall effects of the shock on the plasma.
It is more instructive to consider the shape of the velocity distribution function of the particles.

Evolution of velocity distribution functions: We are particularly interested in the change of the
particle distribution function at successively greater penetration distances into to the shock. Itis
instructive to consider the distribution function with both spherical and cylindrical representations.

Some observed spherical velocity distribution functions are illustrated in Figure 3-2. The velocity of
an individual particle is characterized by the magnitude of the velocity |v| and the spherical angles
0 (the polar angle) and ¢ (the azimuthal angle). The orientation of the coordinate system is such that
0 = 0 points in the +x direction (the direction of the ambient magnetic field) and ¢ = 0 points in the
+z direction (the direction of ambient particle inflow). We have chosen to display the angular
distribution in a planar form by unwrapping 6 and ¢ from a sphere. Thus © has the extent (0 < 0 <
1) and ¢ has the extent (0 < ¢ < 2m). To clarify what we have done, the actual spherical
representation is shown in Figure 3-3 where f(|v], 8, $). Figure 3-3a) illustrates what a beam
distribution would look like in a spherical representation; figure 3-3b) illustrates what a gyrotropic
distribution would look like. Gyrotropic means that the distribution does not depend on the azimuthal
angle ¢. In constructing the distribution function for a given value of z we include all particles in 2
cell spatial z region starting with that value of z and the full 32 cell x region. Thus a given distribution
is calculated with all of the particle in 2 x 32 cell region. Figure 3-2a corresponds to a position z =
cell 84 near the shock front and 614 particles are used to construct the distribution functions. In this
front region most particles have not yet been disturbed by the shock and have a velocity of 2000
km/sec. In the corresponding plot of the angular distribution, these largely undisturbed particles show
up as a spike at ¢ = 0. The periodic symmetry of the planar display ¢ = 0 = 27 makes it appear as
if there were two spikes. The situation actually corresponds to that shown in Figure 3-3a). Also in
Figure 3-2a) we see that a small number of particles have been accelerated to velocities of order 3000




km/sec. Inspection of the angular distribution shows that these particles are grouped near ¢ =T,
0 = 1/2 and thus correspond to reflected particles. Figure 3-2b) corresponds to a z value two cells
deeper into the shock region where 935 particles are contributing to the illustrated distribution. Since
we are only interested in the change of the shape of the distribution functions, all of them have been
normalized to the same ordinate value. At z = cell 88 we see that the distributions of velocity
magnitudes have been further scattered with a net slowing below the initial velocity of 2000 km/sec.
In Figure 3-2c), at cell z= 92 where 1897 particles are included, this slowing and scattering of the
distribution of velocity magnitudes is even more prominent. In addition, we see that a strong angular
scattering in ¢ has occurred. The shock turbulence is driving the angular distribution of the particles
toward gyrotropy with respect to the direction of the magnetic field.

The spherical representation of the particle distribution function is not convenient for stability
analyses involving an ambient magnetic field. We need to know the velocity distribution functions
with respect to the magnetic field direction. Such distributions are depicted in Figure 3-4, where flv,)
and f(v,) are shown with subscripts referring to the direction of the magnetic field. Again the
distributions are depicted at different positions within the shock. They are calculated in the same
manner as the spherical distribution function and are normalized to the same ordinate value. Atz =
84, the front of the shock, almost all particles have velocity v, = 2000 km/sec, v, = 0. On considering
the distribution function at values of z = 94, 104, and 112 cells, we see that the v, distribution has
relaxed and that the v, distribution has developed a Maxwellian form. From the standpoint of
developing a kinetic theory of the plasma instabilities responsible for these observed velocity space
distributions, it is important to note that is that zhe v, distribution retains a "shell-like" form well into
the shock. Thus, at least for the case of dynamically produced collisionless shocks such as the one
simulated here, it is not appropriate to model shock instabilities with a simple bimaxwellian velocity
distribution such as is used in the bulk of analyses of thermalizing instabilities in collisionless shocks.

Summary of observations: We have simulated a collisionless shock wave typical of HANE
conditions and observed its interaction with particles. We saw that particles are strongly accelerated
when they encounter the shock, with some fraction of them reflected back from the shock front. As
one proceeds deeper and deeper into the shocked plasma, the particular distribution functions were
observed to undergo a two stage relaxation process. Over a relatively short distance, the particles
are strongly scattered in the plane perpendicular to the magnetic field and the distribution function
becomes gyrotropic. Over a longer distance scale, the velocity components perpendicular and parallel
to the magnetic field also relax. The parallel distribution, originally a spike at v, = 0, becomes
Maxwellian as perpendicular energy is scattered into parallel energy. The perpendicular distribution,
originally a beam with v, = v,, relaxes strongly but retains a distinct shell-like character.
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SECTION 4
VELOCITY DISTRIBUTION FUNCTION FOR
PARTICLES ENCOUNTERING COLLISIONLESS SHOCK

To model the shell-like v, distribution observed in the simulation of a collisionless shock we choose
the functional form

S, vy ~ Expl-Vi1 Epl-(V, - Vp)'] @4.1)

where V, = v /v, V, = v/vy, Vo =V,/v,,. Here the parameter v, characterizes the shell-like form of
the distribution, while v,, and v, model the thermal spread in the directions perpendicular and parallel
to the magnetic field. When this distribution is normalized, 2 nfvdvdv fiv,v) =1, the
perpendicular part can be separated out to illustrate the normalization associated with the shell-like
distribution

2Exp[-(V, - Vo)’

fv) = 4.2
VEExp[-Vi+/nVy(1 + Erf V)] @2

This is characterized by the two parameters v, and v, . To demonstrate that this is a reasonable
choice for representing the shell-like v, equilibrium we show, in Figure 4.1, the result of fitting the
distribution (2) to the observed f(v,) distribution at z = 96 and 104 cells. The fitting was achieved
with a nonlinear least-squares method using v, and v,, as parameters. Specifically, both distributions
were normalized and then a function Err(vy, v,,) = ¥, [(f%, ¥., V) - fs (¥ )]* was constructed to
measure the error between the analytical distribution and the observed distribution. The sum is over
available v, data points. Err(v,, v,,) was then numerically minimized with respect to its parameters
with the minimizing values of v, and y, providing the best fits to the data. Notice that the
distribution in Figure 4.1b), which is measured some 8 cells further into the shocked plasma than the
distribution in Figure 4.1a), has relaxed its shell-like character (v, is less) and is more thermal (v
is greater).

Moments: For purposes of reference we calculate some moments of this distribution. The
perpendicular speed moment is given by

2V, + & Ep(V)(1 + 2V5)1 + ErfiVy))
2[1 + & Exp(Vg)V,(1 + ErfiVy)]

<V o= 4.3)

where <x £> = 2 nfv,dv,d v, x f(v,, v;). The perpendicular temperature moment is given by
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21 + V) + V& Exp(Va)Vy(3 + 27)(1 +
21 + V7 Ep(V)Vy(1 + ErfV)]

< =

These moments collapse back to the expected Maxwellian forms when V,, - 0.
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£(v,)

z=cell = 96
Vg = 1008 km/sec
Ve, = 900 km/sec

(a)

1000 2000 - 3000 4000

z—cell = 104
vy = 988 km/sec

Ve, = 1118 km/sec

5000

(b)

Figure 4-1.

1000 2000 3000 4000

5000

Example of nonlinear least-squares fits of analytic v, velocity distributions with

. observed distributions at two positions successively deeper into the shock.
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SECTION §
SUMMARY AND CONCLUSIONS

A two-dimensional hybrid particle-in-cell simulation has been used to study the velocity distribution
functions of a plasma shocked by collisionless shock wave typical of a HANE expansion. Such
distribution functions are fundamentally important in ascertaining the dispersive and growth
properties of plasma instabilities that regulate the flow of energy away from a HANE. Previously,
these instabilities have been primarily studied for the bi-Maxwellian velocity distributions that are
thought to be typical of the steady state collisionless bow shock formed where the solar wind
encounters the Earth's magnetic field. The collisionless shock formed by a HANE, on the other hand,
is dynamic and would be expected to lead to velocity distributions more severely distorted than the
bimaxwellians on which most stability analysis is based.

In the simulation, it was observed that background particles are strongly accelerated on encountering
the shock front. Because of the irregular nature of the shock front, the acceleration does not take the
form of a specular reflection often associated with collisionless shocks based on 1-D analysis and
simulation (Winske and Quest, 1988). Rather the acceleration occurs in various directions with
respect to the shock front. Some of the belief that particles should specularly reflect from a
collisionless shock stems from their study with 1-D simulations in which the spatial structure in
directions perpendicular to shock propagation are not considered. By examining the velocity
distribution with respect to the distance within the shock, we can study the evolution of the initially
beam-like velocity distribution (with respect to the shock front). It was found that the most rapid
evolution of the distribution was a rapid relaxation to a gyrotropic form, i.e., a form that was
independent with respect to angle about the magnetic field. Over a somewhat longer distance scale,
the distribution began to develop a Maxwellian form with respect to velocities parallel to the magnetic
field.

The most significant finding of this study was that the velocity distribution perpendicular to the
magnetic field did not have a Maxwellian form but maintains a distinct shell-like form with respect
to v,. We found that the observed distribution could be fitted reasonably well (nonlinear ) with the
functional form fy(v,) ~ exp[-(v, - vo)’].

In a companion report [Gladd and Brecht, 1994], we examine the implications of such a shell-like
distribution function for the mirror mode and Alfven ion cyclotron instabilities that are considered to
be the most important mechanisms for isotropizing plasma energy. For bimaxwellian velocity
distributions, the Alfven ion cyclotron is known to be more important than the mirror mode. The
principle finding in Gladd and Brecht, 1994, is that, despite the shell-like velocity distribution, the
Alfven ion cyclotron instability still dominates the mirror mode instability in thermalizing the
anisotropic plasma produced by a collisonless shock.
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